A robust WG finite element method for convection–diffusion–reaction equations
نویسندگان
چکیده
منابع مشابه
Solution of Wave Equations Near Seawalls by Finite Element Method
A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...
متن کاملA Robust Numerical Method for Stokes Equations Based on Divergence-Free H(div) Finite Element Methods
A computational method based on a divergence-free H(div) approach is presented for the Stokes equations in this article. This method is designed to find velocity approximation in an exact divergence-free subspace of the corresponding H(div) finite element space. That is, the continuity equation is strongly enforced a priori and the pressure is eliminated from the linear system in calculation. A...
متن کاملA Robust Finite Element Method for Darcy-Stokes Flow
Finite element methods for a family of systems of singular perturbation problems of a saddle point structure are discussed. The system is approximately a linear Stokes problem when the perturbation parameter is large, while it degenerates to a mixed formulation of Poisson’s equation as the perturbation parameter tends to zero. It is established, basically by numerical experiments, that most of ...
متن کاملA Weak Galerkin Mixed Finite Element Method for Biharmonic Equations
This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...
متن کاملA Multigrid Method for Nonlinear Unstructured Finite Element Elliptic Equations
This paper presents an application of the element agglomeration-based coarsening procedure (agglomeration AMGe) proposed in [10], to build the components of a multigrid method for solving nonlinear finite element elliptic equations on general unstructured meshes. The agglomeration-based AMGe offers the ability to define coarse elements and element matrices, provided access to elements and eleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.10.029